Универсальный Online-справочник
Поиск
 А | Б | В | Г | Д | Е | Ж | З | И | Й | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Ъ | Ы | Ь | Э | Ю | Я |
Термины из этой статьи

Эйлер (Euler) Леонард [4(15).4.1707, Базель, Швейцария, - 7(18).9.1783, Петербург], математик, механик и физик. Род. в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца (…(дальше)

Стирлинга формула, формула, дающая приближённое выражение произведения п первых натуральных чисел (т. н. факториала) 1=2=...=n = n!, когда число п сомножителей велико. С. ф. была найдена (без оценки…(дальше)

Гамма-функция

Гамма-функция [Г-функция, Г (х)], одна из важнейших специальных функций, обобщающая понятие факториала; для целых положительных n равна Г (n) = (n - 1)! = 1·2... (n - 1). Впервые введена Л. Эйлером в 1729. Г.-ф. для действительных х > 0 определяется равенством

другое обозначение:

Г (х + 1) = p(x) = х!

Основные соотношения для Г.-ф.:

Г (х + 1) = хГ (х) (функциональное уравнение);

Г (х) Г (1 - х) = p/sin px (формула дополнения);

Частные значения:

При больших х справедлива асимптотич. Стирлинга формула

Через Г.-ф. выражается большое число определённых интегралов, бесконечных произведений и сумм рядов. Г.-ф. распространяется и на комплексные значения аргумента.

Лит.: Янке Е., Эмде Ф., Таблицы функций с формулами и кривыми, пер. с нем., 3 изд., М., 1959; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 6 изд., т. 2, М., 1966.