Универсальный Online-справочник
Поиск
 А | Б | В | Г | Д | Е | Ж | З | И | Й | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Ъ | Ы | Ь | Э | Ю | Я |
Термины из этой статьи

Щелочные металлы, химические элементы гл. подгруппы I группы периодической системы элементов Д. И. Менделеева: Li, Na, К, Rb, Cs, Fr. Название получили от гидроокисей Щ. м., названных едкими щелочами…(дальше)

Литиевые руды, природные минеральные образования, содержание Li в которых достаточно для экономически выгодного извлечения Li или его соединений. Li находится в рудах в основном в форме собственных…(дальше)

Лития хлорид, литий хлористый, LiCI, соль, бесцветные кристаллы, плотность 2,07 г/см3, tпл. 614°С; tkип. 1382°С. Л. х. весьма гигроскопичен, расплывается на воздухе; в 100 г воды при 20°С растворяется…(дальше)

Лития гидрид, LiH, бесцветные кристаллы, плотность 0,776 г/см3. LiH устойчивее всех гидридов щелочных и щёлочноземельных металлов. В отсутствие воздуха плавится при 680-697°С почти без разложения; при…(дальше)

Лития карбонат, литий углекислый, Li2CO3, соль, бесцветные кристаллы, плотность 2,11 г/см3 (0°С), tпл. 732°С, выше начинается диссоциация. Растворимость Л. к. в воде низкая (1,33 г на 100 г H2O при 20…(дальше)

Литийорганические соединения, соединения, содержащие связь углерод - литий, R - Li. Алифатические Л. с. - бесцветные кристаллические вещества (R = СН3, C2H5 трет-С4Н9), вязкие неперегоняющиеся…(дальше)

Ядерная энергетика, отрасль энергетики, использующая ядерную энергию (атомную энергию) в целях электрификации и теплофикации; область науки и техники, разрабатывающая и использующая на практике методы…(дальше)

Тритий (лат. Tritium), Т (или 3H), радиоактивный изотоп водорода с массовым числом 3 (отсюда название: от греч. tritos - третий). Открыт в 1934 английским учёными Э. Резерфордом, М. Л. Олифантом и П…(дальше)

Водород (лат. Hydrogenium), Н, химический элемент, первый по порядковому номеру в периодической системе Менделеева; атомная масса 1,00797. При обычных условиях В. - газ; не имеет цвета, запаха и вкуса…(дальше)

Барн, единица эффективного поперечного сечения ядерных процессов. 1 Б. = 10-24см2 = 10-28м2. Выбор этой единицы связан с тем, что геометрические сечения атомных ядер имеют размер порядка 10-24см2…(дальше)

Пластичные смазки, консистентные смазки, смазочные материалы, проявляющие в зависимости от нагрузки свойства жидкости или твёрдого тела. При малых нагрузках они сохраняют свою форму, не стекают с…(дальше)

Литий

Литий (лат. Lithium), Li, химический элемент 1 группы периодической системы Менделеева, атомный номер 3, атомная масса 6,941, относится к щелочным металлам. Природный Л. состоит из двух стабильных изотопов — 6Li (7,42%) и 7Li (92,58%).

Л. был открыт в 1817 шведским химиком А. Арфведсоном в минерале петалите; название от греч. líthos — камень. Металлический Л. впервые получен в 1818 английским химиком Г. Дэви.

Распространение в природе. Л. — типичный элемент земной коры (содержание 3,2×10-3% по массе), он накапливается в наиболее поздних продуктах дифференциации магмы — пегматитах. В мантии мало Л. — в ультраосновных породах всего 5×10-3% (в основных 1,5×10-3%, средних — 2×10-3%, кислых 4×10-3%). Близость ионных радиусов Li+, Fe2+ и Mg2+ позволяет Л. входить в решётки магнезиально-железистых силикатов — пироксенов и амфиболов. В гранитоидах он содержится в виде изоморфной примеси в слюдах. Только в пегматитах и в биосфере известно 28 самостоятельных минералов Л. (силикаты, фосфаты и др.). Все они редкие (см. Литиевые руды). В биосфере Л. мигрирует сравнительно слабо, роль его в живом веществе меньше, чем остальных щелочных металлов. Из вод он легко извлекается глинами, его относительно мало в Мировом океане (1,5×10-5%). Промышленные месторождения Л. связаны как с магматическими породами (пегматиты, пневматолиты), так и с биосферой (солёные озёра).

Физические и химические свойства. Компактный Л. — серебристо-белый металл, быстро покрывающийся тёмно-серым налётом, состоящим из нитрида Li3N и окиси Li2O. При обычной температуре Л. кристаллизуется в кубической объёмноцентрированной решётке, а = 3,5098 . Атомный радиус 1,57 , ионный радиус Li+ 0,68 . Ниже -195°С решётка Л. гексагональная плотноупакованная. Л. — самый лёгкий металл; плотность 0,534 г/см3 (20°С); tпл. 180,5°С, tkип. 1317°С. Удельная теплоёмкость (при 0—100°С) 3,31(103 дж/(кг×К), т. е. 0,790 кал/(г·град); термический коэффициент линейного расширения 5,6×10-5. Удельное электрическое сопротивление (20°С) 9,29×10-8 ом·м (9,29 мком·см); температурный коэффициент электрического сопротивления (0—100°С) 4,50×10-3. Л. парамагнитен. Металл весьма пластичен и вязок, хорошо обрабатывается прессованием и прокаткой, легко протягивается в проволоку. Твёрдость по Моосу 0,6 (твёрже, чем Na и К), легко режется ножом. Давление истечения (15—20°С) 17 Мн/м2 (1,7 кгс/мм2). Модуль упругости 5 Гн/м2 (500 кгс/мм2), предел прочности при растяжении 116 Мн/м2 (11,8 кгс/мм2), относительное удлинение 50—70%. Пары Л. окрашивают пламя в карминово-красный цвет.

Конфигурация внешней электронной оболочки атома Л. 2s1; во всех известных соединениях он одновалентен. При взаимодействии с кислородом или при нагревании на воздухе (горит голубым пламенем) Л. образует окись Li2O (перекись Li2O2 получается только косвенным путём). С водой реагирует менее энергично, чем др. щелочные металлы, при этом образуются гидроокись LiOH и водород. Минеральные кислоты энергично растворяют Li (стоит первым в ряду напряжений, его нормальный электродный потенциал — 3,02 в).

Л. соединяется с галогенами (с йодом при нагревании), образуя галогениды (важнейший — лития хлорид). При нагревании с серой Л. даёт сульфид Li2S, а с водородом — лития гидрид. С азотом Л. медленно реагирует уже при комнатной температуре, энергично — при 250°С с образованием нитрида Li3N. С фосфором Л. непосредственно не взаимодействует, но в специальных условиях могут быть получены фосфиды Li3P, LiP, Li2P2. Нагревание Л. с углеродом приводит к получению карбида Li2C2, с кремнием — силицида Л. Бинарные соединения Л. — Li2O, LiH, Li3N, Li2C2, LiCI и др., a также LiOH весьма реакционноспособны; при нагревании или плавлении они разрушают многие металлы, фарфор, кварц и др. материалы. Карбонат (см. Лития карбонат), фторид LiF, фосфат Li3PO4 и др. соединения Л. по условиям образования и свойствам близки к соответствующим производным магния и кальция.

Л. образует многочисленные литийорганические соединения, что определяет его большую роль в органическом синтезе.

Л. — компонент многих сплавов. С некоторыми металлами (Mg, Zn, Al) он образует твёрдые растворы значительной концентрации, со многими — интерметаллиды (LiAg, LiHg, LiMg2, LiAl и мн. др.). Последние часто весьма тверды и тугоплавки, незначительно изменяются на воздухе; некоторые из них — полупроводники. Изучено более 30 бинарных и ряд тройных систем с участием Л.; соответствующие им сплавы уже нашли применение в технике.

Получение и применение. Соединения Л. получаются в результате гидрометаллургической переработки концентратов — продуктов обогащения литиевых руд. Основной силикатный минерал — сподумен перерабатывают по известковому, сульфатному и сернокислотному методам. В основе первого — разложение сподумена известняком при 1150—1200°С:

Li2O×Al2O3×4SiO2 + 8CaCO3 = Li2OAl2O3 + 4(2CaO×SiO2) + 8CO2.

При выщелачивании спека водой в присутствии избытка извести алюминат Л. разлагается с образованием гидроокиси Л.:

Li2O×Al2O3 + Ca(OH)2 = 2LiOH + CaO×Al2O3.

По сульфатному методу сподумен (и др. алюмосиликаты) спекают с сульфатом калия:

Li2O×Al2O3×4SiO2 + K2SO4 = Li2SO4 + K2O×Al2O3×4SiO2.

Сульфат Л. растворяют в воде и из его раствора содой осаждают карбонат Л.:

Li2SO4 + Na2CO3 = Li2CO3 + Na2SO4.

По сернокислотному методу также получают сначала раствор сульфата Л., а затем карбонат Л.; сподумен разлагают серной кислотой при 250—300°С (реакция применима только для b-модификации сподумена):

b-Li2O×Al2O3×4SiO2 + H2SO4 = Li2SO4 + H2O×Al2O3×4SiO2.

Метод используется для переработки руд, необогащённых сподуменом, если содержание в них Li2O не менее 1%. Фосфатные минералы Л. легко разлагаются кислотами, однако по более новым методам их разлагают смесью гипса и извести при 950—1050°С с последующей водной обработкой спеков и осаждением из растворов карбоната Л.

Металлический Л. получают электролизом расплавленной смеси хлоридов Л. и калия при 400—460°С (весовое соотношение компонентов 1:1). Электролизные ванны футеруются магнезитом, алундом, муллитом, тальком, графитом и др. материалами, устойчивыми к расплавленному электролиту; анодом служат графитовые, а катодом — железные стержни. Черновой металлический Л. содержит механические включения и примеси (К, Mg, Ca, Al, Si, Fe, но главным образом Na). Включения удаляются переплавкой, примеси — рафинированием при пониженном давлении. В настоящее время большое внимание уделяется металлотермическим методам получения Л.

Важнейшая область применения Л. — ядерная энергетика. Изотоп 6Li — единственный промышленный источник для производства трития (см. Водород) по реакции:

.

Сечения захвата тепловых нейтронов (s) изотопами Л. резко различаются: 6Li 945, 7Li 0,033; для естественной смеси 67 (в барнах); это важно в связи с техническим применением Л. — при изготовлении регулирующих стержней в системе защиты реакторов. Жидкий Л. (в виде изотопа 7Li) используется в качестве теплоносителя в урановых реакторах. Расплавленный 7LiF применяется как растворитель соединений U и Th в гомогенных реакторах. Крупнейшим потребителем соединений Л. является силикатная промышленность, в которой используют минералы Л., LiF, Li2CO3 и многие специально получаемые соединения. В чёрной металлургии Л., его соединения и сплавы широко применяют для раскисления, легирования и модифицирования многих марок сплавов. В цветной металлургии литием обрабатывают сплавы для получения хорошей структуры, пластичности и высокого предела прочности. Хорошо известны алюминиевые сплавы, содержащие всего 0,1% Л., — аэрон и склерон; помимо лёгкости, они обладают высокой прочностью, пластичностью, стойкостью против коррозии и очень перспективны для авиастроения. Добавка 0,04% Л. к свинцово-кальциевым подшипниковым сплавам повышает их твёрдость и понижает трение. Соединения Л. используются для получения пластичных смазок. По значимости в современной технике Л. — один из важнейших редких элементов.

В. Е. Плющев.

Литий в организме. Л. постоянно входит в состав живых организмов, однако его биологическая роль выяснена недостаточно. Установлено, что у растений Л. повышает устойчивость к болезням, усиливает фотохимическую активность хлоропластов в листьях (томаты) и синтез никотина (табак). Способность концентрировать Л. сильнее всего выражена среди морских организмов у красных и бурых водорослей, а среди наземных растений — у представителей семейства Ranunculaceae (василистник, лютик) и семейства Solanaceae (дереза). У животных Л. концентрируется главным образом в печени и лёгких.

Лит.: Плющев В. Е., Степин Б. Д., Химия и технология соединений лития, рубидия и цезия, М., 1970; Ландольт П., Ситтиг М., Литий, в кн.: Справочник по редким металлам, пер. с англ., М., 1965.