Универсальный Online-справочник
Поиск
 А | Б | В | Г | Д | Е | Ж | З | И | Й | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Ъ | Ы | Ь | Э | Ю | Я |
Термины из этой статьи

Степенной ряд, ряд вида a0 + a1z + a2z2 +... + anzn +..., где коэффициенты a0, a1, a2,..., an,... - комплексные числа, не зависящие от комплексного переменного z. Областью сходимости С. р. является…(дальше)

Интервал сходимости степенного ряда, интервал действительных значений переменного, обладающий тем свойством, что в каждой точке этого интервала степенной ряд сходится, а в каждой точке, не…(дальше)

Круг сходимости степенного ряда a0+a1(z-z0)+a2(z-z0)2+. (*) круг |z-z0| < R в плоскости комплексного переменного z, обладающий тем свойством, что внутри него ряд (*) сходится, а вне соответствующего…(дальше)

Лежандра многочлены, сферические многочлены, специальная система многочленов последовательно возрастающих степеней. Впервые рассматривалась А. Лежандром и П. Лапласом (в 1782-85) независимо друг от…(дальше)

Область сходимости

Область сходимости, множество значений переменного х, для которых функциональный ряд

сходится. Весьма простую форму О. с. имеет для степенных рядов. Если рассматривать их для действительных значений аргумента, то О. с. состоит либо из одной точки, либо является некоторым интервалом (см. Интервал сходимости), к которому могут присоединяться и его концевые точки (одна или обе), либо, наконец, совпадает со всей осью Ox. Если же рассматривать и комплексные значения аргумента, то О. с. степенного ряда состоит либо из одной точки, либо из внутренности некоторого круга (круга сходимости), к которой могут присоединяться также точки окружности этого круга, либо из всей плоскости комплексного аргумента. Ряды других видов могут иметь более сложные О. с. Например, для рядов по Лежандра многочленам в комплексной области О. с. является внутренность эллипса с фокусами в точках —1 и 1.

О. с. определяется также и для других видов предельных процессов. Так, под О. с. несобственного интеграла, зависящего от параметра, понимают множество значений этого параметра, при которых данный несобственный интеграл сходится.