Универсальный Online-справочник
Поиск
 А | Б | В | Г | Д | Е | Ж | З | И | Й | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Ъ | Ы | Ь | Э | Ю | Я |
Термины из этой статьи

Математическая статистика, раздел математики, посвященный математическим методам систематизации, обработки и использования статистических данных для научных и практических выводов. При этом…(дальше)

Случайная величина в теории вероятностей, величина, принимающая в зависимости от случая те или иные значения с определёнными вероятностями. Так, число очков, выпадающее на верхней грани игральной…(дальше)

Распределение, одна из фаз (стадий) общественного воспроизводства,связующее звено между производством и потреблением. В процессе Р. выявляется доля (пропорция) производителей в реализации и…(дальше)

Нормальное распределение, одно из важнейших распределений вероятностей. Термин "Н. р." применяют как по отношению к распределениям вероятностей случайных величин, так и по отношению к совместным…(дальше)

Статистический анализ многомерный, в широком смысле - раздел математической статистики, объединяющий методы изучения статистических данных, относящихся к объектам, которые характеризуются несколькими…(дальше)

Доверительные границы для неизвестного значения параметра q, соответствующие данному коэффициенту доверия Р, - такие функции q1(x1, x2, ..., xn) и q2 (x1, x2, ..., xn) от наблюдаемых величин x1, x2…(дальше)

Непараметрические методы в математической статистике, методы непосредственной оценки теоретического распределения вероятностей и тех или иных его общих свойств (симметрии и т.п.) по результатам…(дальше)

Статистические оценки, функции от результатов наблюдений, употребляемые для статистического оценивания неизвестных параметров распределения вероятностей изучаемых случайных величин. Например, если X1…(дальше)

Случайный процесс (вероятностный, или стохастический), процесс (т. е. изменение во времени состояния некоторой системы), течение которого может быть различным в зависимости от случая и для которого…(дальше)

Регрессионный анализ, раздел математической статистики, объединяющий практические методы исследования регрессионной зависимости между величинами по статистическим данным (см. Регрессия). Цель Р. а…(дальше)

Стохастическая аппроксимация (от греч. stochastikos - умеющий угадывать, проницательный и лат. approximo - приближаюсь), метод решения широкого класса задач статистического оценивания, при котором…(дальше)

Статистических решений теория, часть математической статистики и игр теории, позволяющая единым образом охватить такие разнообразные задачи, как статистическая проверка гипотез, построение…(дальше)

Статистическое оценивание

Статистическое оценивание, совокупность способов, употребляемых в математической статистике для приближённого определения неизвестных распределений вероятностей (или каких-либо их характеристик) по результатам наблюдений. В наиболее распространённом случае независимых наблюдений их результаты образуют последовательность

X1, X2,..., Xn,... (1)

независимых случайных величин (или векторов), имеющих одно и то же (неизвестное) распределение вероятностей с функцией распределения F (x). Часто предполагают, что функция F (x) зависит неизвестным образом от одного или нескольких параметров и определению подлежат лишь значения самих этих параметров [например, значительная часть теории, особенно в многомерном случае, развита в предположении, что неизвестное распределение является нормальным распределением, у которого все параметры или какая-либо часть их неизвестны (см. Статистический анализ многомерный)]. Два основных вида С. о. — т. н. точечное оценивание и оценивание с помощью доверительных границ. В первом случае в качестве приближённого значения для неизвестной характеристики выбирают какую-либо одну функцию от результатов наблюдений, во втором — указывают интервал значений, с высокой вероятностью "накрывающий" неизвестное значение этой характеристики. В более общих случаях интервалы, образуемые доверительными границами (доверительные интервалы), заменяются более сложными доверительными множествами.

О С. о. функции распределения F (x) см. Непараметрические методы в математической статистике; о С. о. параметров см. Статистические оценки.

Разработаны также методы С. о. и для случая, когда результаты наблюдений (1) зависимы, и для случая, когда индекс n заменяется непрерывно меняющимся аргументом t, т. е. для случайных процессов. В частности, широко используется С. о. таких характеристик случайных процессов, как корреляционная функция и спектральная функция. В связи с задачами регрессионного анализа был развит новый метод С. о. — стохастическая аппроксимация. При классификации и сравнении способов С. о. исходят из ряда принципов (таких, как состоятельность, несмещенность, инвариантность и др.), которые в их наиболее общей форме рассматривают в Статистических решений теории.

Лит.: Крамер Г., Математические методы статистики, пер. с англ., 2 изд., М., 1975; Рао С. Р., Линейные статистические методы и их применения, пер. с англ., М., 1968.

Ю. В. Прохоров.